Marine biology: Flea market

A newly discovered virus may be the most abundant organism on the planet

What is the commonest living thing on Earth? Until now, those in the know would probably have answered Pelagibacter ubique, the most successful member of a group of bacteria, called SAR11, that jointly constitute about a third of the single-celled organisms in the ocean. But this is not P. ubique’s only claim to fame, for unlike almost every other known cellular creature, it and its relatives have seemed to be untroubled by viruses.

As Jonathan Swift put it in a much-misquoted poem, “So, naturalists observe, a flea/Hath smaller fleas that on him prey”. Parasites, in other words, are everywhere. They are also, usually, more abundant than their hosts. An astute observer might therefore have suspected that the actual most-common species on Earth would be a “flea” that parasitised P. ubique, rather than the bacterium itself. The absence of such fleas (in the form of viruses called bacteriophages, that attack bacteria) has puzzled virologists since 1990, when the SAR11 group was identified. Some thought the advantage this absence conferred explained the group’s abundance. But no. As they report in this week’s Nature, Stephen Giovannoni of Oregon State University and his colleagues have discovered the elusive phages. Swift’s wisdom, it seems, still holds good.

Tracking down a particular virus in the ocean makes finding a needle in a haystack look a trivial task. A litre of seawater has billions of viruses in it. Modern genetic techniques can obtain DNA sequences from these viruses, but that cannot tie a particular virus to a particular host.

To do so, Dr Giovannoni (pictured) borrowed a technique from homeopathy: he diluted some seawater to such an extent that, statistically speaking, he expected a 100-microlitre-sized aliquot to contain only one or two viruses. The difference between his approach and a homeopath’s was that what homeopathy dilutes almost to nothing are chemicals, and thus cannot breed. A virus can, given a suitable host. So he mixed each of several hundred aliquots into tubes of water containing P. ubique. Then he waited.

The race is to the Swift

After 60 hours, he looked to see what had happened. In most cases the bacteria had thrived. In a few, though, they had been killed by what looked like viral infection. It was these samples that he ran through the DNA-sequencing machine, in the knowledge that the only viral DNA present would be from whatever it was had killed the bacteria.

His reward was to find not one, but four viruses that parasitise P. ubique. He then compared their DNA with databases of DNA found in seawater from around the world, to find out how abundant each is. The upshot was that a virus dubbed HTVC010P was the commonest. It thus displaces its host as the likely winner of the most-common-living-thing prize.

That does depend, of course, on your definition of “living thing”. Some biologists count viruses as organisms. Some do not. The reason is that a virus relies for its growth and reproduction on the metabolic processes of the cell it infects. This means viruses themselves are hard to parasitise, since they do no work on which another organism can free-ride. Which is why the next two lines of Swift’s poem, “And these have smaller fleas to bite ’em/And so proceed ad infinitum”, are wrong—and why, because HTVC010P itself can have no parasites, it probably really is the commonest organism on the planet.

First published in The Economist.  Also available in audio here.

References:

  1. Zhao et al., Abundant SAR11 viruses in the ocean, Nature2013.
  2. Brown et al., Global biogeography of SAR11 marine bacteria, Mol Syst Biol2012.
  3. Swift, Poetry: A Rhapsody, 1733.

Image credit: Lynn Ketchum

A revolution in lens-making

Understanding of optics has changed no end since the world’s oldest known lens was ground nearly 3,000 years ago in modern-day Iraq. Yet its Assyrian maker would instantly recognise today’s lenses, which continue to be made much as they were then: by fashioning a piece of transparent material into a solid with curved surfaces. Just as invariably, the curves introduce optical aberrations whose correction requires tweaking the lens’s geometry in complicated ways. As a consequence, lenses remain bulky, especially by the standards of modern electronics.

Enter Federico Capasso, of Harvard University. He and his colleagues have created a lens that is completely flat and the width of two human hairs. It works because its features, measured in nanometres (billionths of a metre), make it a “metamaterial”, endowed with some weird and useful properties.

According to the laws of quantum mechanics, a particle of light, called a photon, can take literally any possible path between source A and point B. However, those same laws stipulate that the path of least time is the most likely. When a photon is travelling through a uniform medium, like a vacuum, that amounts to a straight line. But although its speed in a vacuum is constant, light travels at different (lower) speeds in different media. For example, it moves more slowly in glass than it does in air. So in a medium composed of both air and glass, light’s most likely path from A to B will depend on the thickness of glass it needs to traverse, as well as the total distance it needs to cover. That means that the light may sometimes prefer to bend. This is the quantum-mechanical basis of refraction.

In order to maximise the probability that photons from A will end up precisely at B, those going in a straight line need to be slowed down relative to those taking a more circuitous route, so that, in effect, all hit B the same time. This can be done by forcing the former to pass through more glass than the latter. The result is a round piece of glass that is thick in the middle, where the straight-line path crosses, and tapers off towards the edge, where the less direct routes do—in other words, a focusing lens, with its focal point at B.

Dr Capasso’s lens, described in Nano Letters, also slows photons down. But instead of using varying thickness of glass to do the job, he and his team created an array of antennae which absorb photons, hold on to them for a short time and then release them. In order for this trick to work, though, the distance between the antennae has to be smaller than the wavelength of the light being focused. In Dr Capasso’s case that means less than 1,550 nanometres, though he thinks that with tweaking it could be made to work with shorter-wavelength visible light, too.

Creating the array involved coating a standard silicon wafer, 250 microns thick, with a 60-nanometre layer of gold. Most of this layer was then stripped away using a technique called electron-beam litography, leaving behind a forest of V-shaped antennae arranged in concentric circles. By fiddling with their precise shape, after much trial and error, antennae lying on different circles could be coaxed into holding on to the photons for slightly different lengths of time, mimicking an ordinary glass lens. The whole fragile system can be sandwiched between two sheets of transparent material to make it more robust.

At present the new-fangled lens only works for monochromatic light and so is unlikely to replace the glass sort in smartphone cameras anytime soon. But it could revolutionise instruments that rely on single-colour lasers, by making further minaturisation possible while eliminating the optical aberrations inherent to glass lenses. Such devices include laser microscopes, which are used to capture high-resolution images of cells, or optical data storage, where a more accurate and smaller lens could help squeeze more information into ever less space.

First published on economist.com.

References: 

  1. Capasso et al., Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces, Nano Letters2012.
  2. Capasso et al., Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction, Science2011.

Also appeared in The Economist. Also available in audio here.

Image credit: Francesco Aieta

Clicked off

Doom beckons for online ads

They pop up without warning, distract attention and clog computers. Users have many reasons to shun online ads—and find it easy to do so. Though global online-advertising revenues rose by 22% in 2011, websites that depend on selling their viewers’ eyeballs are worried. Around 9% of all online page views come from browsers armed with ad-blocking software, such as Adblock Plus, downloaded nearly 180m times since 2007, and 3.5m times in October alone.

Few sites have tried to fight back. In 2010 Ars Technica, a technology-news outlet, found that 40% of its users were blocking its ads. So it blocked their access for a day, but signed up only 200 users (out of 5m a month) for its ad-free version. Media firms are now opting for paywalls. Press+, a paywall provider set up in 2010, now has over 300 clients.

Till Faida, co-founder of Eyeo, which owns Adblock Plus, agrees that ads are needed to pay for content. Users of his plug-in can choose to allow “acceptable ads”: no animation and no tiresome clicking to dodge them. “You cannot annoy someone into liking you,” says Norm Johnston of Mindshare, a media-buying agency. But for many users the only good ad is an invisible one.

First published in The EconomistAlso available in audio here.

Free image from here.