Jellyfish are the most energy efficient swimmers, new metric confirms

Even though a blue whale is much heavier than a tuna, the mammal consumes less energy per unit weight than the fish when they travel the same distance. For years, these sort of comparisons have dominated our understanding of the energy efficiency of animal movement, which is important for designing vehicles inspired by nature, such as underwater drones.

But Neelesh Patankar, professor of mechanical engineering at Northwestern University, believes that this measure has only limited benefit. Instead, with his colleagues, he has come up with a new measure that allows comparison of animals as small as bees or zebrafish with animals as large as albatrosses or blue whales.

The new measure has two implications. First, among those that have typical swimming and flying actions, which includes most fish and all birds, each animal is as energy efficient as it can be. This means that, given their size and shape, each animal is able to spend the least amount of energy to move the most distance. Second, this measure confirms a previous finding that jellyfish are unusually energy efficient, beating all the thousands of fish and birds Patankar studied.

“Put another way, a whale and a tuna are equally energy efficient,” Patankar said. “Except jellyfish, which have an unusual action that makes them more efficient.”

A new measure

To understand why jellyfish are special, we need to first answer the question why we need a new measure for energy efficiency. Patankar offers an analogy: if there are two cars that are of equal weight, would you expect them to have the same mileage? Just as in cars, animals’ motion will vary based on factors other than their weight.

John Dabiri, professor of aeronautics and bioengineering at California Institute of Technology, said, “It is not immediately obvious how to compare the swimming efficiency of a bacterium and a blue whale, for example, but Patankar and colleagues have developed one.”

To make the comparison, Patankar borrowed from a well-known concept in physics called the Reynolds number, which explains the relationship between two forces that act on any body that is moving through a fluid. The first is viscous force, which is, crudely put, the push you feel when you put your hand out of a moving vehicle. The second is inertial forces, which is the tendency of a moving object to keep moving (or that of a stationary object to remain stationary).

Depending on the size of a body and the speed at which it travels, the body faces either a low Reynolds number, where the forces acting on a body are mostly viscous forces, or a high Reynolds number, where inertial forces dominate. This creates a natural difference in how much energy is spent countering these forces.

Reynolds number was developed to look at the aerodynamics of stiff bodies, such as aeroplanes and ships. But Patankar reckoned he could use it to help compare animals of different sizes. He gathered data from thousands of birds and fish to come up with a metric called the energy-consumption coefficient, which he has described in the Proceedings of the National Academy of Sciences. Using it, he found that all the animals he looked at (except jellyfish) are as energy-efficient as they can be.

Note that Y-axis is for energy-consumption coefficient, not for energy efficiency.
Rahul Bale

“The idea that animals are tuned for energy-efficient locomotion is not surprising, but the authors have devised a fresh approach to the issue of how to compare the efficiencies of different animals,” Dabiri said.

Patankar finds, as he had hoped, that small animals find themselves in low Reynolds number situations, and large animals find themselves in high Reynolds number situations. This means they expend energies differently, which is what Patankar’s coefficient represents. Using the coefficient, one can compare the energy efficiency of bodies weighing few grams to many tonnes.

The coefficient also indicates that animals that fly are less energy-efficient than those that swim. This, Patankar thinks, must be because those in flight have to expend more energy to counteract gravity than those in water.

Jelly’s secrets

While working on the energy-consumption coefficient, he came across recent work done by Dabiri and his colleagues which showed that the unique contract-and-relax action of jellyfish allowed it to recapture some of the energy it spends on motion. This means a jellyfish can travel a lot more distance for the same amount of energy spent by other animals adjusted for its weight and size.

When Patankar used Dabiri’s data and plotted it on his energy-consumption coefficient chart, he found that the only animals that were more energy efficient than he had predicted were jellyfish.

“We found that each swimming or flying animal can spend all the energy it has at its disposal. However, our coefficient is a fair way to conclusively show that indeed jellyfish are more efficient,” Patankar said.

Dabiri is already working on exploiting jellyfish propulsion. However, he thinks that, apart from providing a new metric to compare different types of animals on the energy-efficiency scale, Patankar’s measure could be a used for evaluating the performance of aerial and underwater drones that are being developed, especially those with designs that are inspired by flying and swimming animals.The Conversation

First published on The Conversation.

To kill, cheetahs use agility and acceleration not top speed

Researchers have used gadget-laden collars to record cheetahs’ movements in the wild. They found that cheetahs succeed not because it is the fastest animal on land, but because of its incredible acceleration and unmatched turning speeds.

Most of what we know about cheetahs in the wild is based on direct observation, or through videos from remote cameras. This limits our understanding of cheetahs to open habitats and daytime. Alan Wilson at the University of London’s Royal Veterinary College wanted to study cheetahs better.

Over the past ten years, Wilson and his team have been perfecting devices to study the locomotion of animals. For cheetahs, they assembled a collar that carries a GPS to record location data, an accelerometer to measure speed, a gyroscope to understand angular motion, and a magnetometer to make location data more accurate, which it does by measuring tiny changes in Earth’s magnetic field. The data were transmitted back to the researchers in real time through radio.

“The key development,” Wilson said, “was to pack all that in a low-power device”. The collar relies only on solar cells for recharging, but carries a battery in case of failure.

After tracking 367 runs by five cheetahs in the wild, Wilson found many surprising results.

First, the top speed of most cheetah hunts is on average half the “record speed”. That record speed is 102 km per hour, and was noted in 1965 (though not published until 1997), by a veterinary surgeon in Kenya.

The average length of a cheetah’s hunt was about 180 meters. Instead, on average, cheetahs covered about six kilometers every day. With only two hunts made every three days, high speed runs make for only a tiny fraction of a cheetah’s daily routine.

Second, he found that cheetahs can successfully hunt in all terrains, not just open fields. The run data were overlaid on Google Earth to visualise the landscape the cheetahs were operating in. This showed that only 20% of chases in open fields were successful, compared to 31% in dense cover. Wilson thinks that dense cover, such as trees, might give cheetahs vantage points that open fields cannot.

Third, cheetahs can decelerate faster than they can accelerate, much as sports cars with powerful engines need beefed-up brakes. While both these processes require different sets of muscles and depend on different conditions, the rates of acceleration and deceleration beat those of any other land-dwelling animal. Based on the recorded data, Wilson calculates that the muscle power output of cheetahs is about four times that of Usain Bolt, three times that of polo horses, and nearly double that of greyhounds.

The top speed of a cheetah hunt had no correlation to the successful outcome of the hunt. Instead, Wilson found that success depended more on how fast the cheetah could slow down, rather than on how fast it could speed up. It is this last phase of a hunt that was critical for success, where the cheetah slows down. When these two observations are put together, Wilson thinks that it seems cheetahs don’t abandon hunts early to save energy or reduce risk of injury.

Finally, cheetahs are not built to be able to turn at their highest speed. In an artificial setting, which astronauts and fighter pilots are put into for training, the force felt by a cheetah trying to turn around at top speed could knock it unconscious. Instead they use their ability to slow down and their ridged footpads and claws to grip the ground well enough to turn quickly.

The results of Wilson’s work are published in the journal Nature today. Craig McGowan at the University of Idaho, an expert in understanding animal locomotion who was not involved in this, was impressed by Wilson’s work. “This research has been able to collect a huge amount of data from animals behaving naturally in their environment. No other dataset of this kind exists,” he said.

Roger Kram at the University of Colorado, Boulder, another biomechanics expert who was not involved in the study, said, “The technology used is absolutely fantastic. Most people studying biomechanics of running do so in labs. I’d like to see this technology applied to prey, such as impala and Thomson’s gazelle.”

Wilson is keen to see the technology used widely. “My aim is not to commercialise this. We’ve revealed all the technology and methods in our paper,” he said. His team has already started using it on lions and wild dogs.The Conversation

First published on The Conversation.

Image credit: photosbyflick

This story made it to the front page of Reddit and Digg, receiving over 130,000 views in two days.