The academic and scientific environment in India leaves a lot to be desired. Nonetheless, many Indians are sated on the copious vestiges of the past, one of which is a claim to the invention of the zero. How true is that claim? The investigation takes the reader from Switzerland to Babylon and then from Rajasthan to Cambodia to reveal a bizarre story. (27 min read)
Climate change will affect emerging nations the most. Apart from slowing down economic growth, it also exacerbates their under-preparedness by threatening to disrupt ecosystems that support millions. In fact, the five big river systems of Asia that are fed by Himalayan glaciers—of the Indus, Ganges, Brahmaputra, Salween and Mekong—together support 1.3 billion people. According to a new study, climate change will increase water flow in them until 2050. Are policymakers prepared to confront how this will alter cropping calendars? (2 min read)
Delve into the deceptively placid world of solitary confinement, its passions-packed history, the costs of running them, and the emotional and psychological damage it inflicts on those who underwent it. There is no alternative to the strong prose in this piece, so sample this: “One winter in Shawangunk, in Ulster County, NY, two inmates on either side of his cell devised a simple game. From morning to night, as Billy watched, envelopes of excrement went from one side to the other, careering past his cell like hockey pucks flying into a revolting space-time dimension. Most of the projectiles landed, and remained, just outside his cell door. After several days, he yelled: ‘If you have a beef with each other, go at it like men. Don’t do this bozo shit!’ … They came up with a new game. For five long weeks, they tirelessly banged on Billy’s cell with their sneakers.” (40 min read)
+ The writer, Shruti Ravindran, is a Brooklyn-based freelance journalist. She recently graduated from Columbia University.
The curious incident of water-repelling leaves in the garden inspires two physicists to explore how some leaves in nature are superhydrophobic—that is, completely water-averse. Using a high-speed camera and some high school math and physics, they show how this cool effect comes about. (7 min read)
This interview was published in 2011. However, Jayan’s views on science journalism in India are no less pertinent. He talks about understanding science, misreporting, sensationalisation and ethics. He has advice for aspiring science journalists, too: “Read, read and read.” (9 min read)
Interactive story of the week
Immerse yourself in the wonderful story lives of Vumbi pride of lions at the Serengeti National Park in Tanzania. Produced by National Geographic, the story has 23 short chapters and a compassionate aesthetic to help you understand the complex lives these animals lead, how they grow up, how they hunt, why they eat what they eat, the tribes that live around them, the people who kill them and what we can do to help them. The Vumbi might have provided narrative fodder but their stories are true for every lion in the wild.
We received many helpful replies to our survey (if you filled it out, thank you!). One popular request was to send out Curious Bends twice a week, and we’re going to give that a try.
If you have any suggestions or other feedback, send them to curiousbends@gmail.com. You can also find Akshat and Mukunth on Twitter. Have a nice week!
The problem is not that there is too much information, but that there is too little of the right kind
In his brilliant book, A Short History of Nearly Everything, Bill Bryson shows through many examples how history often credits the wrong person. They show how being in the right place at the right time or publishing your ideas in the right publication so that the right people notice them is some times more important than having the idea.
For instance, today the great astronomer Edward Hubble is credited to have discovered that we live in an ever-expanding universe. However, it was an astronomer with the cheerily intergalactic name Vesto Slipher who should have got the credit.
Or take the example of Carl Scheele, a Swedish chemist, who discovered eight new elements—oxygen, nitrogen, chlorine, fluorine, manganese, barium, molybdenum and tungsten—and received credit for none of them. His work was either overlooked or made it late to publication after someone else had made the same discovery independently. The credit instead went to chemists of the English-speaking world.
And, if you’re still not convinced, try Josiah Willard Gibbs, who Bryson calls the “most brilliant person that most people have never heard of”. Between 1875 and 1878 he produced a series of papers on the thermodynamic principles of nearly everything but published them in the Transactions of the Connecticut Academy of Arts and Science, a journal that “managed to be obscure even in Connecticut”. Although Gibbs was recognised later in life, most of the work he did remained hidden for too long at great cost to the scientific enterprise.
Information games
The reason I am telling you all this is not just because it is interesting, but also because there is a lesson we can learn from these examples. All three scientists who got scooped lived in the age when information was scarce and the fastest it travelled was at the speed of a moving vehicle.
We live in the age of information excess and the fastest it travels is the fastest it will ever travel (ie at the speed of light). However, we are still stuck with one problem that those gentlemen of the 19th century faced and perhaps it has become worse—who receives what information matters even more today. With the internet throwing up interesting things on our screens every day, are we getting the information we really need?
I’ll explain the problem with two examples. The first comes from how we learn history. This came to my attention during my first months in Oxford. Ask any non-Indian what they thought about British colonisation of India and you got a view that was quite different to what I was taught in school in India.
Partisan views
Most people acknowledged that there was imperial excess. They bemoaned the human cost of the partition between India and Pakistan, for instance. But they, particularly British friends, also praised how the British gave Indians railways, law and order, the English language, and, some even suggested, the Indian identity. Most importantly, they saw Indian independence as British leaving India. This was a time, one said, that Britain was relinquishing control of other colonies too following the troubles that World War II had caused for Britain domestically.
This wasn’t what I was taught in school. Indian textbooks glorify the independence struggle, it seemed. I was surrounded by some of the smartest people I had ever met, and instead of questioning them I had to go back and read history. What I realised soon though was that neither my British friends nor I had quite the balanced view that one ought to have of this important period in world history.
I wasn’t expecting my British friends to know about Mangal Pandey or Bhagat Singh, but I thought they would be aware of the Quit India Movement and Jallianwallah Bagh massacre. That they would recognise the importance of the role of freedom fighters, such as Sardar Patel, in accelerating India’s independence. Equally, I suspect my British friends thought I should have more appreciation for the things the British left in India.
The point here is that where the information came from changed how people viewed the world. In this case the topic was a well-studied period of history, and so I was able to educate myself enough to get a balanced view. But what about more recent events?
History’s value
In The Sceptical Patriot, Sidin Vadukut analysed history textbooks used by Indian kids today. He found that none of them devote any space to post-Independence period. Beyond a little bit on the Indian constitution, there is nothing about the wars with Pakistan and China or about the Naxal movement, which is considered the greatest threat to India’s internal security.
Why should Indian kids learn about this stuff? Vadukut’s story might give you an answer:
Sometime in 2002 or 2003, a group of Japanse Hibakusha, or atomic bomb survivors, visited Chennai. The city was a stop on what I think was a global tour to promote peace and condemn nuclear weapons. They decided to visit a primary school and tell the students why the idea of nuclear weapons was a bad one.
I read about the school visit in one of the local newspapers. I don’t recall which one, and no amount of searching online has thrown up the original news report. But the broad details of what happened are seared into my mind.
After the presentation, the Hibakusha asked the children: should countries go to war? No, they all said in chorus. Should countries use nuclear weapons? No. Should India use nuclear weapons? Never. What if the enemy is Pakistan? Oh, Pakistan is a special case, the kids said, we should totally nuke them.
Every time I retell this story at a public forum, there is an explosion of laughter followed by an awkward silence.
Absence of proper facts
This brings me to the second example, which is closer to me—science journalism. The media landscape of the west is changing. The old media houses are losing audience and revenue at such a pace that it feels like a crisis. The first to lose their jobs in such cases tend to be specialist journalists such as those covering science, environment and health. Sometimes the sections live on, but they shrink in size and depth. The reporting gets done by general reporters instead.
There have been some positive changes with new media organisations trying to fill the gap. And despite all that, even with shrinking newsrooms, western media’s science coverage remains so much better than Indian media’s. A survey I did a few years ago of Indian newspapers gives the same results today—proper science reporting doesn’t exist.
This is a problem. Most of the time if you come across a science story in Indian newspapers, it happens to be one from an international wire service, such as AP, Reuters or The Guardian. Despite the international nature of science, Indian readers are fed the writing of western journalists. The stories become less relevant and thus less interesting. While the hard-science stories are still somewhat valuable, those about the environment, health or even technology aren’t.
This matters because policy depends on the quality of information that decision-makers get. One more example from Vadukut’s book makes that case absolutely clear. In March 2008, Daggubati Purandeswari, the then minister of state for human resource development, when talking about India’s education system, parroted “facts” about Indians abroad, which had been forwarded in a hoax chain email.
“Sir, as rightly pointed out by the honourable member, our students have been placed very well globally. For example 12% scientists in the United States are Indians. We have 38% if the doctors in the US who are again Indians. 36% of NASA scientists are again Indians. So, the students are doing very well, and they are reaching places which again reflects on the quality of education that is being provided to our children in the country.”
All of these “facts” can be easily verified as being false, but the honourable MP did not think she needed to do that. Her words were then reported in Times of India the next day as “facts”. And that is how facts get made up.
Science suffers
That aside, had there been good science journalists writing about the achievements of scientists in India, perhaps Daggubati would not have relied on information from dodgy sources. India’s premier institutes, such as the Indian Institutes of Technology, never figure in the world university rankings. From the information available to the minister today, she won’t be able to figure out whether the absence of IITs in such rankings says something about the poor quality of research or the lack of communication of that research.
There is also another side to this story. In my time at Oxford, whenever there was a paper published in an Indian or Chinese journal, I was explicitly advised not to give it too much value. The suggestion was that research in these journals was not reliable, which in other words means that the researchers were making up data.
This kind of opinion may have been formed by experience. But mostly this opinion was the result of western media reporting negative science stories emerging from China and India, which make academics wary of trusting such research. This, I believe, must lead to missing out on genuinely good research being produced in these countries.
The solution, of course, is one that will require change from the big editorial houses. In my conversations with Indian journalists, I’ve been told many times that there is thirst for good science content but no publication is ready to provide it.
A different solution that a friend and I are pursuing is to collate good science stories from around the web that have their focus on the other side of the world. While this doesn’t solve the need for more science reporting, at least it provides a central place to find good content related to India. Some of it exists, but sadly it tends not to be at one place but spread across different publications. (You can sign up for our newsletter here.)
Those gentlemen in the 19th century suffered personal loss because key information didn’t reach the right audience. Today’s tragedy is the same but the reason is different—key information is not reaching the right audience because either there is too much information and very poor filters or there aren’t enough people to collect and present the information that is so desperately needed.
I stepped out of a chemistry lab to receive a shiny doctorate a little more than two years ago. Then, against the wisdom of many, I decided to become a journalist. That decision was made not because I despised academia, but because it seemed to me that journalism was where my strengths would give me the best chance to succeed.
In doing so, I was leaving behind a world that I had tremendous respect for. Dedicating one’s life to pursuing hard questions in a narrow field of knowledge enriches the world in countless ways. That enrichment is the result of two things: production of new knowledge and new knowledge-bearers (ie students). What you read in popular press about universities is mostly what new research has found about the world. A less talked about, and perhaps greater, contribution that universities make is in educating new students.
Teaching the same course year after year sounds boring to me, but I’ve been assured by many that it is one of the reasons they enjoy being academics. This yearly practice of coming up with new and better ways of explaining fundamental concepts combined with the struggles on the edge of knowledge in a particular field gives these academics the power of conveying the meaning of complex concepts in simple and powerful ways.
A new experiment
If I were asked to give one reason for choosing science journalism, it would be that I get to learn new things about the world all the time. Hardly a days goes by when there isn’t something awesome in science news to read and write about. That is why when I was offered, a year ago today, to be the launch editor for the science and technology section of The Conversation’s UK edition, I wasn’t going to let the job go.
But there was another reason why the job appealed to me: the idea was to get academics to write for the public. The hope was that, with their expertise and skills at explaining ideas, they would help put news in broader context and convey the “meaning” of events to help improve public dialogue on important topics.
While the scientist in me was dancing with joy, the journalist was sceptical. What academics usually write is meant for fellow academics. Their use of passive tense and jargon can put off even the most interested non-experts. They also work on vastly different timescales. Journal articles can take from months to years to get published. News articles usually take only few hours or days to get to the reader.
Marrying the two professions for a public service project was a great idea, but would it work? Could the third major contribution of universities be educating the public (not just a promise, but a reality)?
Is there demand?
“Professors, we need you!” said Nicholas Kristof in the New York Times. The Conversation Media Group, founded in 2011 in Australia, got to work before Kristof made the public demand. By the time it launched in the UK in May 2013, it had shown that the Australian public had an appetite for this experiment.
The success down under was swift for one more reason—The Conversation represented a “third choice”. Until 2011, most newspapers and online news websites were owned by either Fairfax or News Corp, which allowed The Conversation to tap into a readership eagerly looking for alternatives.
The UK was different. It had (and still has) some of the most respected publications in the world. There was plenty of choice for an average reader across the political divide. Yet, it seemed that The Conversation stood a chance. Many of the best publications were under financial constraints, cutting staff, especially specialist reporters in science, environment and health. There was scope for explaining news better, and bringing new stories that journalists missed or didn’t have the time to cover.
Readership figures show that the experiment has been successful so far. For the last few months, which is less than a year since launch, the UK edition alone has been reaching more than 2 million readers, and that number is growing quickly. All this with a small team (seven editors at launch, then 14 since February) and no marketing budget.
As a Creative Commons publisher, The Conversation’s authors and their articles have featured in some of the top publications worldwide, which have different aims and leanings—The Guardian, Washington Post, New York Times, The Independent, The Hindu, Daily Mail, New Statesman, The Week, The Atlantic, Quartz, Business Insider, Scientific American, Popular Science, Discover Magazine, Ars Technica and Slate, among others.
Much of my scepticism about this job was reasonable. But, right from the start, I was pleasantly surprised at the both the quality and the speed of writing. When given a brief and a deadline, academics usually delivered. Sure first-time authors needed (and still need) lots of help, but most of them were also prepared to learn and improve in this form of communication. What surprised me the most was their enthusiasm. Whoever thinks academics don’t like to engage with the public should spend just one day in our office.
For the first few months, about four in five stories were those where I had to approach an academic with an idea and commission them to write an article. But as The Conversation’s name started spreading, I started getting in more pitches. This was what I was waiting for. Academics who understand what The Conversation does, who get what the public reads, and who were willing to spend the time to write such articles. These academics were bringing through new stories or new angles to old stories, all of which journalists had missed. Here, I realised, were the true wonks.
What is true wonkery?
Recently Felix Salmon of Reuters asked, “Is there a wonk bubble?” In answering that question, he mainly referred to the launch of two websites Vox.com, which wants to “explain the news”, and FiveThirtyEight.com, which wants to use data to tell news stories. I agree with Salmon that both these experiments are great for journalism, but I don’t think that they represent “wonkery” in the true sense.
The new publications are being built on the back of the wonkery of its Editors-in-Chief: Ezra Klein (politics and economics wonk) and Nate Silver (data wonk). The rest of the editorial staff, while quite capable and of high calibre, can’t all be classed in the same category as wonks, definitely not in Salmon’s narrow definition of journalists who know their subject really well and built their reputation through blogging (mostly about policy and politics).
Wonk’s definition as “a person who is obsessively interested in a specified subject” is actually much more accurate for academics (or even PhD students). That is why I class them as the true wonks. Being able to tap into this wonkery, or expertise (as most people would call it), can bring through stories that journalists would just not find on their own.
Economists such as Tyler Cowen, Paul Krugman, Simon Wren-Lewis and David Blanchflower command large audiences already. Scientists have had a long tradition of popularising science, be it Carl Sagan or Brian Cox. Now, beyond promoting the good work of already engaged academics, what The Conversation provides is a platform for new and diverse voices with fresh ideas, which would have otherwise remained in the ivory towers. More than 11,000 academics from over 700 institutions have already contributed to this new conversation.
To give you a flavour of what I mean, I have selected some of my favourite science stories on The Conversation from the past year. They have been split into four categories: the first is explanatory (The Contextual) and the other three are stories that journalists missed or couldn’t dig up (The Newsworthy, The Amazing and The Strange). I trust you can judge for yourself whether the experiment is worth it.