Ageing cells reveal features of cancer

The older we get, the higher our risk of cancer. With age, we accumulate exposure to environments and chemicals that increase the risk of acquiring cancer-causing mutations. But the danger doesn’t increase in a linear manner, and we know little about why there is such a dramatic increase with ageing.

Accumulated damage isn’t the only thing going on as we age. The body’s cells also go through a process called senescence. Chief among the changes that come with senescence are alterations to the epigenome, the proteins and chemical modifications that are attached to our DNA. These epigenetic changes can influence which genes are active in different tissues.

During this phase of a human cell’s life, the changes are an attempt to shutdown the process of cell division. Cell division involves creating copies of chromosomes and distributing them into two identical copies of the parent cell. But cells that go senescent must stop multiplying.

Cancer cells manage to bypass the mechanisms that stop them multiplying, including those put in place during senescence.

In the new study, published in Nature Cell Biology, Peter Adams at the University of Glasgow followed the ageing process in fibroblasts, which are cells that form connective tissue.

Adams and his colleague found that ageing cells have less control over their epigenome leading to widespread changes in DNA. Many sections of the genome, which were supposed to be under the control of DNA methyltransferase (DNMT1), end up with fewer methyl groups than would be expected. While some sections, known as CpG islands, get more methyl groups. It was surprising that comparison of these epigenetic changes with those found in cancer cells showed many similarities.

According to co-author of the study Richard Meehan, a researcher at the University of Edinburgh’s Human Genetics Unit, the study shows that ageing cells have some of the same features as cancer. “But we must be careful about interpreting the results,” he said. The study involved looking at human cells in Petri dishes, so the experiments must be repeated in animals and then humans before we can draw firm conclusions.

If the study stands that test, however, then we will have a strong hint of why ageing increases our risk of cancer and better understanding of the ageing process. “I don’t know if the results will help us fight cancer, but if I am able to delay the ageing of my fibroblasts, one thing’s for sure: I’ll look a hell of a lot better when I’m older,” Meehan said.

Avi Roy, a researcher at the University of Buckingham, has also worked on the senescence of cells. He said, “What they have done is not completely new, but it is a big piece of work. And they have a lot of evidence to back up their claim.” Roy agrees with Meehan and warns that any conclusions about revealing how cancer works based on this work would be premature.

A 2011 study points to the difficulty of drawing wider conclusions. In the study researchers removed a particular kind of senescent cell from ageing mice. They found that in these mice many of the age-related diseases, such as cataracts, were delayed. “But the mice didn’t have their life extended. They died of either cardiac arrests or cancer,” Roy said. Much remains to be understood about how ageing causes cancer, and with the latest study from Adams and Meehan we take a few steps closer.The Conversation

First published on The Conversation.

Image credit:lnmurrey

How does epigenetics shape life?

Identical twins, despite being biologically identical at birth, grow up to become unique individuals. Sure they may have a lot more things in common than two randomly picked individuals, yet there are many characteristics which belong only to one or the other. If the twins have the exact same DNA, then what is that makes them different?

The common answer to this question is it’s the environment that they live in which shapes them differently. Researchers have found that such environmental factors cause chemical modifications to the genome without affecting the nucleotide sequence, leading to the unique characteristics that we observe. This field of research is called epigenetics, and beyond the DNA, it’s what shapes our lives.

Rat mothers nurture their pups by licking and grooming. Researchers in Canada studying epigenetic changes found that rats whose mothers licked them more than normal expressed hundreds of genes differently from those who were licked less than normal. These differences were consistent and predictable, and led to a number of behavioural changes among the rats, including one where highly licked rats’ response to stress was a lot better than the less‐licked rats’.

Epigenetic changes don’t just occur through environmental factors but are also a different form of inheritance, one that doesn’t have to suffer from the randomness of natural selection. The licking of the rat encodes specific information onto her pup’s DNA without modifying to the sequence of base pairs. Mom’s behaviour programs the pup’s DNA in a way that will make it more likely to succeed. Such information is stored in the DNA in many ways, one of which is through DNA methylation. Through this process methyl groups are attached on to the DNA, and their attachment at specific positions leads to genes being turned on or off. This makes epigenetic changes reversible. For example, you can take a low‐nutured rat, inject its brain with a drug that removes methyl groups, and make it act like a high‐nurtured rat.

DNA methylation also plays a key role in cell division and cancer cells are known to divide faster than normal cells. Researchers in the US have developed drugs to interfere with DNA methylation as a treatment for cancer. They use molecules that mimic cytosine, one of the four bases of DNA. In cell replication, the fake cytosine swaps places with real cytosine in the growing stand of DNA, which then in turn traps DNA methyltransferase. When used in low enough doses, the drug allows the formation of the cell but with less methylated DNA. These drugs are currently being used to treat myelodysplastic syndrome, a prelukemia condition.

As Brona McVittie says, like the conductor of an orchestra controls the performance of musicians, epigenetic factors govern how the cell plays the notes in DNA. A better understanding of these factors has the potential of revolutionising evolutionary and developmental biology, thus affecting practices from medicine to agriculture.

Further reading:

  1. Learn Genetics, The University of Utah
  2. Introduction to epigenetics from Science magazine
  3. More ways to fight cancer through epigenetics, The Economist
Image credit: SciShark